If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+9k+4=0
a = 3; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·3·4
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{33}}{2*3}=\frac{-9-\sqrt{33}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{33}}{2*3}=\frac{-9+\sqrt{33}}{6} $
| 6.1x-9.5=27.1 | | 3c/4=2c+3c | | 9(x-3)+5x=10x-29+2(2x+1) | | 7+x^2-14x=20+7 | | 5x-3=7x-2(x-3) | | z/8+8=1 | | 27x^+12x=0 | | 4.4x-17.4=9 | | 6x-1=6(x9) | | 5x+444=29 | | 14x-8=18x-6 | | 5(s+3)=15 | | w(-)14=10 | | 2-3/4m=5 | | X-4/8+9-x/12-2x-7/24+5=x-8 | | 21r-23=-13 | | −4/1 a−4=4/7 a−3 | | 5=8n-2 | | 45p-2= | | 29+11d=-24 | | 6y+3=4y-8 | | 3x-4×-×=10 | | 36=6x+2(x+2) | | 24n-3=2 | | 24=4(u-3)+5u | | -16x-11=-155 | | 1/4=1/2c+3/4 | | 15=-5b+3b | | 3x+3=10× | | 3x+30+6x+20=180 | | 4(k-2)=9k+2 | | 4x+3=×-5 |